Math 247A Lecture 9 Notes

Daniel Raban

January 27, 2020

1 Boundedness Properties of The Hardy-Littlewood Maximal Function and A_p Weights

1.1 Boundedness properties of the Hardy-Littlewood maximal function

The Hardy-Littlewood maximal function is given by

$$Mf(x) = \sup_{r>0} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y)| dy.$$

Theorem 1.1. Let $\omega : \mathbb{R}^d \to [0, \infty)$ be a locally integrable function (a weight), to which we associate a measure via

$$\omega(E) = \int_{E} \omega(x) \, dx.$$

Then

1. $M:L^1(M\omega\,dx)\to L^{1,\infty}(\omega\,dx)$ maps boundedly; that is,

$$\omega(\lbrace x: Mf(x) > \lambda \rbrace) \lesssim \frac{1}{\lambda} \int |f(y)|(M\omega)(y) \, dy$$

 $\textit{uniformly in } \lambda > 0 \textit{ for all } f \in L^1(M\omega\,dx).$

2. $M: L^p(M\omega dx) \to L^p(\omega dx)$ boundedly for all 1 ; that is,

$$\int |Mf(x)|^p \omega(x) \, dx \lesssim \int |f(y)|^p (M\omega)(y) \, dy$$

uniformly for $f \in L^p(M\omega dx)$.

Just like the proof of the maximal inequality, we will start with a covering lemma.

Lemma 1.1 (Vitali). Given a finite collection of balls $\{B(x_j, r_j)\}_{j \in J}$, there exists a subcollection S such that

- 1. Distinct balls are disjoint.
- 2. $\bigcup_{j \in I} B(x_j, r_j) \subseteq \bigcup_{j \in S} B(x_j, 3r_j)$.

Proof. We run the following algorithm. Set $S = \emptyset$.

- 1. Choose a ball of largest radius and add it to S.
- 2. Discard any balls that intersect balls in S.
- 3. If no balls remain, stop. Otherwise, return to step 1.

Now let's prove the theorem.

Proof. First note that $M: L^{\infty}(M\omega dx) \to L^{\infty}(\omega dx)$ boundedly:

$$||Mf||_{L^{\infty}(\omega dx)} = \inf_{E:\omega(E)=0} \sup_{x \in E^c} Mf(x)$$

Since ω is locally integrable, it takes Lebesgue-null sets to ω -null sets.

$$\leq \inf_{E:|E|=0} \sup_{x \in E^c} Mf(x)$$

$$\leq ||f||_{L^{\infty}(dx)}$$

$$= \inf_{E:|E|=0} \sup_{x \in E^c} |f(x)|$$

 $M\omega > 0$ unless $\omega \equiv 0$, so

$$= \inf_{E:(M\omega)(E)=0} \sup_{x \in E^c} |f(x)|$$
$$= ||f||_{L^{\infty}(M\omega \, dx)}.$$

So by the Marcinkiewicz interpolation theorem, it suffices to prove $M: L^1(M\omega dx) \emptyset L^{1,\infty}(\omega dx)$. Fix $\lambda > 0$. Let K be a compact subset of $\{x: Mf(x) > \lambda\}$ (this suffices by regularity). For $x \in K$, there is some r(x) > 0 such that

$$\frac{1}{|B(x,r(x))|} \int_{B(x,r(x))} |f(y)| \, dy > \lambda.$$

Now $K \subseteq \bigcup_{x \in K} B(x, r(x))$, and by compactness, there exists a finite subcover such that $\bigcup_{j \in J} B(x_j, r_j)$. By Vitali, there exists a subcollection S of pairwise disjoint balls such that $K \subseteq \bigcup_{j \in S} B(x_j, 3r_j)$. So $\omega(K) \le \sum_{j \in S} \omega(B(x_j, 3r_j))$.

For Lebesgue measure, we would just pull out the constant 3 and add the measures. But here, we don't have that property, so we will relate it to the maximal function. For $x \in B(x_j, r_j)$,

$$\omega(B(x_j, 3r_j)) = \int_{B(x_j, 3r_j)} \omega(y) \, dy$$

$$\leq \frac{|B(x,4r_j)|}{|B(x,4r_j)|} \int_{B(x,4r_j)} \omega(y) \, dy$$

$$\leq 4^d |B(x,4r_j)| M\omega(x).$$

Now integrate this against f:

$$\omega(B(x_j, 3r_j)) \frac{1}{|B(x_j, r_j)|} \int_{B(x_j, r_j)} |f(y)| \, dy \le 4^d \int_{B(x_j, r_j)} M\omega(x) |f(y)| \, dy. \qquad \Box$$

Remark 1.1. Rather than placing the weights outside the maximal function, one could place them inside: Define

$$M_{\mu}f(x) = \sup_{r>0} \frac{1}{\mu(B(x,r))} \int_{B(x,r)} |f(y)| \, d\mu(y),$$

where μ is a nonnegative measure. If μ is a **doubling measure** (i.e. if $B_1 = B(x, r)$ and $B_2 = B(x, 2r)$, then $\mu(B_2) \lesssim \mu(B_1)$ uniformly for $x \in \mathbb{R}^d$ and r > 0), then with small modifications, the proof of this theorem yields:

$$M_{\mu}: L^{1}(d\mu) \to L^{1,\infty}(d\mu), \qquad M_{\mu}: L^{p}(d\mu) \to L^{p}(d\mu), \qquad \forall 1$$

boundedly.

1.2 A_p weights

Can one characterize the nonnegative measure μ for which

$$M: L^p(d\mu) \to L^p(d\mu), \qquad 1$$

boundedly? Yes, these are the A_p weights.

Definition 1.1. We say that a locally integrable weight $\omega : \mathbb{R}^d \to [0, \infty)$ satisfies the A_1 condition (and we write $\omega \in A_1$) if there is a C > 0 such that $M\omega(x) \leq C\omega(x)$ for almost every x.

Remark 1.2. If $\omega \in A_1$, then the theorem yields

$$M: L^p(\omega dx) \to L^p(\omega dx)$$
 $M: L^1(\omega, dx) \to L^{1,\infty}(\omega dx)$ $\forall 1$

boundedly.

Let's characterize these weights.

Lemma 1.2. The following are equivalent:

1.
$$\omega \in A_1$$

2.

$$\frac{1}{|B|} \int_{B} \omega(y) \, dy \lesssim \omega(x)$$

uniformly for a.e. $x \in B$ and all balls B.

3.

$$\frac{1}{|B|} \int_{B} f(y) \, dy \lesssim \frac{1}{\omega(B)} \int_{B} f(y) \omega(y) \, dy$$

for all balls B and all $f \geq 0$.

Proof. (1) \Longrightarrow (2): Fix x with $M\omega(x) \leq C\omega(x)$, and let B be a ball of radius r that contains x. Then

$$\begin{split} \frac{1}{|B|} \int_{B} \omega(y) \, dy &\leq \frac{2^d}{|B(x,2r)|} \int_{B(x,2r)} \omega(y) \, dy \\ &\leq 2^d M \omega(x) \\ &\leq 2^d C \omega(x). \end{split}$$

(2) \Longrightarrow (3): ω is bounded below by its maximal function, so

$$\frac{1}{\omega(B)} \int_{B} f(y)\omega(y) \, dy \ge \frac{1}{\omega(B)} \int_{B} f(y) \left(\frac{1}{|B|} \int_{B} \omega(z) \, dz \, dy \right)$$
$$\ge \frac{1}{|B|} \int_{B} f(y) \, dy.$$

(3) \Longrightarrow (2): Let x be a Lebesgue point for ω , and let $B\ni x$. Let $r\ll 1$ be such that $B(x,r)\subseteq B$. Set $f=\mathbbm{1}_{B(x,r)}$. Then

$$\frac{1}{|B|}|B(x,r)| \lesssim \frac{1}{\omega(B)} \int_{B(x,r)} \omega(y) \, dy.$$

Rearranging this, we get

$$\frac{\omega(B)}{|B|} \lesssim \frac{1}{|B(x,r)|} \int_{B(x,r)} \omega(y) \, dy \to \omega(x).$$

Definition 1.2. We say that a weight $\omega : \mathbb{R}^d \to [0, \infty)$ satisfies the A_p condition for 1 if there exists an <math>A > 0 such that

$$\sup_{\text{balls } B} \frac{1}{|B|} \int_{B} \omega(y) \, dy \cdot \left[\frac{1}{|B|} \int_{B} \omega(y)^{-p'/p} \, dy \right]^{p/p'} \le A,$$

or equivalently,

$$\sup_{\text{balls } B} |B|^{-p} \omega(B) \|\omega^{-1/(p-1)}\|_{L^{1}(B)}^{p-1} \le A.$$

Remark 1.3.

- 1. This condition is invariant under $\omega \mapsto \lambda \omega$ and $\omega(x) \mapsto \omega(\lambda x)$.
- 2. $\omega \in A_p$ if and only if $\sigma = \omega^{-p'/p} \in A_{p'}$. Indeed, the condition reads:

$$\sup_{\text{balls }B} \frac{1}{|B|^p} \int \sigma(y)^{-p/p'} \, dy \left[\int_B \sigma(y) \, dy \right]^{p/p'} \leq A.$$

If we raise everything to the power p'/p,

$$\sup_{\text{balls }B} \frac{1}{|B|^{p'}} \int_B \sigma(y) \, dy \left[\int_B \sigma(y)^{-p/p'} \, dy \right]^{p'/p} \leq A^{p'/p}.$$